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ABSTRACT 
Force sensing has been a key enabling technology for a wide range 
of interfaces such as digitally enhanced body and world surfaces for 
touch interactions. Additionally, force often contains rich contex-
tual information about user activities and can be used to enhance 
machine perception for improved user and environment awareness. 
To sense force, conventional approaches rely on contact sensors 
made of pressure-sensitive materials such as piezo flms/discs or 
force-sensitive resistors. We present ForceSight, a non-contact force 
sensing approach using laser speckle imaging. Our key observa-
tion is that object surfaces deform in the presence of force. This 
deformation, though very minute, manifests as observable and 
discernible laser speckle shifts, which we leverage to sense the 
applied force. This non-contact force-sensing capability opens up 
new opportunities for rich interactions and can be used to power 
user-/environment-aware interfaces. We frst built and verifed the 
model of laser speckle shift with surface deformations. To investi-
gate the feasibility of our approach, we conducted studies on metal, 
plastic, wood, along with a wide variety of materials. Additionally, 
we included supplementary tests to fully tease out the performance 
of our approach. Finally, we demonstrated the applicability of Force-
Sight with several demonstrative example applications. 

CCS CONCEPTS 
• Hardware → Sensors and actuators; Sensor applications 
and deployments; • Human-centered computing → Human 
computer interaction (HCI). 
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1 INTRODUCTION 
Force is a ubiquitous signal that occurs when objects are in contact. 
As a side product of human activities in environments, force reveals 
unique information and force sensing has a wide range of use cases 
in ubiquitous computing and human-computer interaction. For 
instance, touch interactions such as discrete button touches, swipes, 
and scrolling induce force between user fngers and interaction 
mediums such as buttons, glass panels, and skin. Robots rely on 
force as critical feedback for object manipulation. Moreover, the 
sensed force can be used to derive a rich set of second-order signals. 
For example, force applied to host surfaces by objects reveals their 
weights. Sensing the force between user fngers and contact surfaces 
adds an additional dimension to touch interactions. All these signals 
constitute rich information that intelligent vision-based sensing 
systems could leverage in addition to RGB and depth to become 
more robust, accurate, and even privacy-preserving. 

In this paper, we consider only normal force, applied to objects in 
contact perpendicular to the contacting surfaces. To sense this force, 
conventional approaches instrument sensors (e.g., Force Sensitive 
Resistor) on surfaces, or in between objects. This contact-based 
sensing approach either requires wiring which can be infexible to 
deploy, or runs on battery-powered wireless sensor systems, which 
is costly to scale and maintain. Additionally, contact-based sensors 
could be sensitive to exposure of elements, and thus can be prone to 
error without periodical calibrations. These inborn challenges of the 
contact-based approach eliminate sensing opportunities for a wide 
range of low-cost and passive objects such as 3D prints and room 
utilities (e.g., walls, tables, faucets). There are also scenarios where 
contact-based sensors might not be preferable such as on-body 
interactions, from a user experience perspective. 

To address these challenges, we create a non-contact force sens-
ing approach based on laser speckle imaging, a well-known imag-
ing technique commonly used for medical applications (e.g., blood 
fow assessment) but now adapted to enable non-contact sensing 
for ubiquitous force signals that a wide array of interactive sys-
tems could leverage. Specifcally, we detect minute deformations of 
surfaces when force is present. Our key observation is that laser 
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speckles change signifcantly at surface deformations, even with 
very small magnitude. Because laser speckles are caused by scat-
tered signals added constructively and destructively depending on 
their relative phases, surface deformations of the same order of 
magnitude as the laser wavelength (several hundred nanometers) 
can alter laser speckles signifcantly. During the course of surface 
deformations, the changes of laser speckles have structured spa-
tial and temporal patterns that correlate with the amount of force 
applied. Our system, which mainly consists of a defocused cam-
era, a laser source, and signal-processing algorithms, detects these 
structured patterns to infer the amount of force. 

In this research, we frst conducted a series of benchmark tests 
with common everyday materials and a high-precision force-sensing 
linear actuator to verify our sensing principle. Then we established 
a calibration process for later evaluation. Our core signal-processing 
algorithm features optic fow displacement tracking and denoised 
aggregation. We investigated two sensing confgurations – one is 
the diverged laser setting, with a diverged laser beam covering a 
wide surface area in which force could happen anywhere inside; 
the other is the focused laser setting, which uses a focused laser 
beam to sense force at known locations. Finally, we conducted an 
evaluation that systematically investigated ForceSight with three 
common materials – wood, plastic, and metal of various sizes and 
thicknesses, and at various distances with two calibration methods. 
We also investigated a wide spectrum of factors in supplemental 
studies to fully tease out the performance of our system. The results 
indicated a robust and accurate performance of our system, with 
all average errors across all materials and distances being less than 
0.31 N. Finally, we demonstrate the applicability of our system with 
example applications. Overall, our contributions include: 

• A theoretical model of laser speckle motion due to force-
induced surface deformations. 

• An end-to-end system including hardware and signal pro-
cessing algorithms for non-contact force sensing based on 
laser speckle imaging. 

• A systematic evaluation including two sensing confgura-
tions, two calibration procedures, and multiple series of tests 
to investigate the feasibility of the sensing approach. 

• A representative set of example applications that demon-
strate the expressivity of our proposed sensing approach. 

2 RELATED WORK 

2.1 Laser Sensing for Interactive Systems 
Laser is widely used in sensing systems for being collimated and 
coherent – two unique properties that contribute to signal-to-noise 
ratio and high sensitivity respectively of laser-based sensing sys-
tems. Previous systems have leveraged collimated lasers (with low 
divergence) in creating interactive systems, e.g. Digits [14] uses 
angled line lasers to intersect fngers for fnger position estimation 
and hand pose reconstruction. When modulated with RF frequen-
cies as carrier waves, range-fnding laser beams (i.e. LiDAR). have 
long been used to build interactive surfaces (e.g., The LaserWall 
[21, 22] and SurfaceSight [16]). A diferent object tracking principle 
using feedback loops featuring a movable mirror platform and a 
camera has been shown [3]. Lumitrack [40] used flms in concert 
with lasers to have structured light patterns on ambient optical 

sensors for 3D tracking. Due to the high coherence, constructive 
and destructive interferences between refected laser wavefront 
result in light patterns of bright and dark dots respectively. This 
light pattern is called laser speckle, which has been thoroughly 
explained by Zizka et al. [46]. Next, we review prior work using 
this phenomenon, which ForceSight also leverages. 

2.2 Laser Speckle Imaging 
First, it is possible to have laser travel inside the transmission 
medium, which alters the laser path resulting in distinctive in-
terference that encodes information into laser speckle patterns. For 
example, Li et al. [17] used laser speckles to detect perturbations of 
optic fbers. Kim et al. [15] used a similar principle to detect defor-
mations of a scotch tape, through which pressure inside the cavity 
can be detected remotely. Note that it is possible to use non-laser 
optical approaches to detect surface deformations (e.g., [4, 8]), the 
use of laser by its nature of active sensing signifcantly improves 
the SNR and thus lowers the complexity of hardware and software. 

Closer to our setup is prior work that detected laser speckles 
induced by the refections of object surfaces. Prior work has demon-
strated laser as carrier signals to reveal material type information 
[6, 25]. Jo et al. [13] and Smith et al. [32] leveraged the sensitivity of 
laser speckle to surface displacements to track objects in 3D space. 
With high-speed cameras, spatial correlations between speckle pat-
terns in frames when objects are in motion can be preserved. Even 
fngertips can be tracked for micro-gesture input [31]. This sensing 
principle is akin to how a laser-based optical mouse tracks its posi-
tion on 2D surfaces. SpeckleSense [46] and SpeckleEye [20] demon-
strated low-cost and high-speed sensors in multiple confgurations 
that enable rich interactive applications. It is also possible to detect 
second-order signals derived from this laser speckle shift caused by 
surface displacements. Shih et al. [30] demonstrated laser speckle 
imaging in surface tampering detection. Surface waves caused by 
in-air acoustic signals or vibrations from built-in motors can also 
be detected remotely with laser speckle shifts [28, 38, 44, 45]. 

Closest to our work are Laser Speckle Imaging systems in the 
medical domain, with their capability to sense surface deforma-
tions over time at microscales. Researchers have used defused laser 
on body tissues to image blood fow. The slight deformations of 
microvasculature due to blood fow cause minute laser speckles 
movements. These movements generate blurred local regions on 
images [2, 7]. This sensing principle is easy to set up, low-cost to 
implement, and has shown a wide array of use cases in clinical set-
tings (e.g., Dermatology [11], Ophthalmology [35], and Neurology 
[23]). For a complete review of laser speckle’s clinical applications, 
we recommend Heeman et al. [9]. 

3 MODELING LASER SPECKLE 

3.1 Laser Speckle Pattern on Rough Surfaces 
When rough surfaces are illuminated by laser beams, a random in-
terference pattern will be observed on the image plane, called laser 
speckle [1]. To elaborate, a whole difuse surface can be regarded 
as being composed of massive independent scattering surface el-
ements, which result in statistically independent phases of the 



ForceSight: Non-Contact Force Sensing with Laser Speckle Imaging UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

Figure 1: Left: Real speckles. Right: Simulated speckles. 

refected laser beams. These non-coherent beams add up construc-
tively and destructively as they traverse in space, forming granular 
patterns of random distribution on the image plane. 

To efciently verify laser speckle forming, we built the model in 
simulation. We use a Gaussian beam to simulate an incident laser 
over a uniform random rough surface Φ(x ,y). Beam distribution 
д(x ,y) on the rough surface can be described as Eq. 1 [36].h i 

2 ik ω0 −(x +y2)( 1
2ρ )−ikd 

ω 2 + 
д(x ,y) = e (1)

ω 
where ω0 and ω are the waist radius, and illuminated beam spot 

radius, respectively. (x ,y) refers to the location on the rough surface. 
k = 2π in which λ is the wavelength of Gaussian beam. ρ meansλ
the wave-front curvature radius. d is the shortest distance between 
the laser source and the rough surface. The back-scattered light can 
be modeled by the Fresnel difraction [29]. 

To validate our simulation, we collected real-world laser speckles 
on a white wall using a USB camera with a resolution of 2592×1944. 
The laser speckles were induced by a 10 mW 532 nm green laser 
(12-degree divergence), positioned 10 cm away from the wall. The 
real-world speckles and simulated speckles are shown in Fig. 1. The 
simulated speckles resemble real speckles in terms of their size and 
shape, though the overall distribution is sparser for the diference 
between the wall surface and the random rough surface. 

With the subtle deformation of the object surface, speckle pat-
terns of adjacent timeframes have high similarity, which allows 
speckle motion tracking. However, the speckle patterns can also 
“boi”, meaning the speckles can tumble randomly fading in and 
out and the original spatial structure of patterns alters. In general, 
speckle motion appears as a combination of speckle translation and 
boiling, since the speckle deformation would occur inevitably [34]. 
To compensate for the boiling efect, as we will show later in the 
paper, we designed our algorithm so that spatial continuity is not 
a prerequisite, i.e., we do not track the same set of speckles over 
long distances on the image plane. 

3.2 Laser Speckle Motion Due to Surface 
Deformation 

In this section, we derive a theoretical speckle fow model to explain 
how the laser speckle patterns change due to surface deformations 
in the presence of force. 

3.2.1 Deformation Model. For simplicity of exposition without 
loss of generality, we frame the physical model as applying a con-
centrated load to the center of a rectangular plate with edges simply 
supported. Assuming the plate is isotropic and homogeneous, we 

Figure 2: ForceSight Modeling. A: Confguration of laser 
speckle imaging. A defocused camera captures speckles 
formed by laser beams refected from the material sur-
face. B: Deformation model. C: Due to surface deformation 
at force, a laser beam refected by the micro-surface Ωs 
changes its imaging position from I to I ′ on the image plane. 
Left: no force applied. Center: force applied at O . Right: 
zoomed-in micro-surface. 

can simplify the problem by looking at its transverse cross-section. 
As shown in Fig. 2 B, f is the point load actuated at the center of 
the beam, and x is the distance from the center to a point of interest. 
δ (x , f ) and θ (x , f ) are the plate deformation distance (i.e., defec-
tion) and the angle in radians at the point of interest, respectively. 
δmax is the maximum defection which locates at the plate center. 
The θ is defned as 0 when the plate is not deformed. The equations 
of the defection and angle are as follows [19, p. 330–331], 

f 2δ (x , f ) = (L3 − 6Lx + 4x 3) 0 ≤ x ≤ L/2 (2)
48EIs 

δ (x , f )|x =0 = δmax (f ) = 
f L3 

(3)
48EIs 

f 
θ (x , f ) = (Lx − x 2) 0 ≤ x ≤ L/2 (4)

4EIs 

θ (x , f )| L = θmax = 
f L2 

(5)x = 2 16EIs 
where E is the Young’s Modulus, Is is the moment of inertia of 

the material plate, and L is the side length of the plate. The formulas 
indicate that the defection, scales linearly with the magnitude of 
applied force, as verifed in Section 3.3 (Fig. 3 Right). 

3.2.2 Micro-Surface Hypothesis. We use the following hypothesis 
to approximate our surface for the sensing principle. A surface 
can be divided into multiple small sub-surfaces, as Fig. 2 C shows. 
When a sub-surface is small enough, its area becomes insignifcant 
for our interest. We defne such a sub-surface, as a micro-surface. If 
we look from the side, the surface plate is idealized as a polygonal 
line combining line segments of all micro-surfaces. 

3.2.3 Speckle Motion due to Surface Deformation. As shown in 
Fig. 2 C, in 2D space, the location, defection, and angle of a micro-
surface are respectively represented by x (distance from plate center 
to the micro-surface), δ , and θ . Proof in 3D space is a symmetry-
based extension of our discussion in 2D space, with 3D coordinates 
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and normal vectors. Given that the deformation model is isotropic 
on the homogeneous plate, we will move on to prove it in 2D space 
which is more concise and clear. 
Statement: The speckle motion goes towards the contact point in 
the presence of force. The motion displacement on the image plate 
can be described by 

f0
∆I = aD (Lx − x 2) 0 ≤ x ≤ L/2 (6)

4EIs 
where a is a scaling factor of focus-image projection model, D is 
the focus-surface distance, f0 is actual force, L is the length, x is 
the Ωs − O distance (from the micro-surface to the plate center). 
Confguration: As shown in Fig. 2 A and C, our model consists of 
a laser, a material surface (i.e., the plate in the previous discussion), 
and a camera with a focus lens, a focus plane, and an image plane. 
The focus plane denotes the plane where objects are in focus, whose 
position can be deduced from the Thin Lens Equation. The camera 
is defocused, thus speckle motion is obvious while the imaging of 
surface is blurry, preserving the SNR of our setup by not letting 
surface textures register on the image plane. The coordinate system 
origin is O , which is set to the intersection of the material surface 
and optical axis of the lens. The surface center is also confgured at 
O . The original surface is D m away from the focus plane. 
Proof: Suppose we have a micro-surface Ωs which is x away from 
the origin O . A laser beam is refected by Ωs onto the focus plane 
at F . We call F a focus point (a point in focus, not a "focal point"). 
With no force, its defection δ (x , f )|f =0 = 0 and deformation angle 
θ (x , f )|f =0 = 0. F registers a conjugate point I on the image plane. 

Now, a small force is applied at the surface center. It pushes the 
micro-surface Ωs all the way to Ω ′ with defection δ and defor-s 
mation angle θ . As a result, the focus point F shifts to F ′, and the 
conjugate point I moves to I ′ accordingly, toward the touch center. 
The defection, angle, and speckle motion can be modeled as below, 

f0
δ (x , f )|f =f0 = (L3 − 6Lx2 + 4x 3) (7)

48EIs 
f0

θ (x , f )|f =f0 = (Lx − x 2) (8)
4EIs 

∆I = a∆F = a |F ′ − F | = a(D + δ (x , f0)) tan θ (x , f0) (9) 
Given our confguration where the D (m) is much larger than 

the surface deformation (from nm to mm), the model can be ap-
proximated as 

f0
∆I ≈ aD tan θ (x , f ) = aD (Lx − x 2) (10)

4EIs 
From this speckle motion model, we can draw several observa-

tions, which we also drew from validation in Section 3.3: 

(1) The speckle motion ∆I is linearly correlated with force f . 
(2) The speckle motion ∆I grows as the distance D increases. 

wh3
(3) Given Is = , where w and h are the width and thick-12 

ness of the material surface plate, the speckle motion δ I is 
proportional to the inverse of the cube of thickness h. 

(4) When the stifness increases (i.e., the Young’s Modulus E is 
larger), the speckle motion ∆I decreases. 

3.3 Sensing Principle Validation 
We collected data to verify our sensing principle and modeling. A 
motor-based linear actuator was used (see Fig. 5 Right) to actuate a 

Figure 3: Sensing principle validated with a linear actuator 
setup. Left: raw laser speckle. Center: highlighted speckle 
shift due to the surface deformation caused by an applied 
force of 2 N. Right: Integrated Laser Speckle Velocity corre-
lates with the applied force. 

Figure 4: Fields of Integrated Laser Speckle Velocity in pres-
ence of diferent amounts of force, forming a centripetal pat-
tern towards the force centers. 

60.96 cm square metal surface which measured 1.59 mm ( 16
1 ”) thick. 

Surface deformation was measured by counting motor steps (at 
0.78 µm resolution) while the applied force was measured with the 
force meter afxed to the linear actuator’s indenter. We bundled a 
camera with a diverged laser as shown in Fig. 5 Left (Details of this 
sensor bundle can be found in Section 4.1) and placed them above 
the surface. The linear actuator pushed the surface until the force 
reached 5 N. Data was streamed to a PC through USB. 

Fig. 3 Left shows the raw laser speckles, while Fig. 3 Center 
highlights distinctive laser shifts (observed at 10 cm from the point 
of the applied force of 0 N vs. 2 N). The laser was focused during 
the data collection for better visualization of the laser speckle shifts, 
avoiding quantization in images (due to relatively small speckle 
sizes induced by diverged lasers). These shifts were due to small 
surface deformations caused by the applied force. We use optical 
fow to calculate the distance of laser speckle shift between adja-
cent frames, called laser speckle velocity (LSV). Note that LSV was 
referred to as the speckle motion in our modeling section. Fig. 3 
Right plots the integral of LSV (ILSV) and the applied force over 
linear actuation distance across the entire image frame excluding 
regions occluded by the sensor bundle. The ILSV correlates with the 
amount of force. We also plot out the ILSV across a larger region 
(900×900 pixels) in the presence of 0 N, 1 N, 2 N, 3 N, 4 N, and 5 N 
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Figure 5: Left: ForceSight sensor bundle. Right: evaluation 
setup with the force gauge mounted on a linear actuator. 

forces respectively, as shown in Fig. 4. The length and direction of 
each quiver indicate the normalized magnitude and the direction 
of ILSV. It shows a centripetal pattern towards the force centers, 
with growing magnitudes as the force increases. 

Overall, these results verify the sensing principle that the rest of 
our paper builds upon. Therefore, we can average ILSV magnitudes 
to get a robust indicator signal of ForceSight for force estimation. For 
higher accuracy, our force-sensing algorithm uses the magnitude 
projected onto the direction toward the force center for a weighted 
aggregation, which will be further described in Section 4.2.2. 

3.4 Calibration Exploration 
The test surfaces are simplifcations of real-world objects which 
are often complex (e.g., uneven surfaces, irregular shapes, varying 
thicknesses, and heterogeneous material compositions). Modeling 
this level of complexity requires precise sensory systems (e.g., 3D 
scanners) and intense calculations. In comparison, calibration is a 
more viable path for its simple setup process so long as the signal 
has high repeatability or the algorithm can cope with shifts in sig-
nals over time and confguration changes. In fact, calibration is a 
common technique in Laser Speckle Imaging – for example, Laser 
Speckle Contrast Imaging requires captured data as a baseline [30]. 
Calibration is also common in force-sensing applications. For exam-
ple, once FSR is inserted, it needs calibration to map its resistance 
to the amount of force. Therefore, we set out to design ForceSight 
with this empirical approach, to develop algorithms with minimal 
calibration needed in practical force-sensing applications. 

4 IMPLEMENTATION 

4.1 Sensor Bundle 
Our sensor (Fig. 5 Left) consists of a camera (FLIR GS3-U3-32S4M-C 
1/1.8" Grasshopper®3 1536×2048) and a 532 nm (green) 100 mW 
point laser projector (from Civil Laser). We use the camera at its 
highest frame rate 121 fps with a fxed 4 mm/F1.8 lens (Edmund 
Optics) throughout the evaluation, with the camera out-of-focus 
such that its working distance from front housing is adjusted to 
0 mm. A 532 nm camera flter is attached to the camera for better 
SNR. The camera and the laser projector are bundled, pointing 
in the same direction. The camera can capture speckles from the 
difuse refection of the laser on an object’s surface. 

We explore two confgurations for the laser in our sensor bundle, 
the diverged mode, and the focused mode. In diverged mode, the 
laser is diverged and expanded with three concave lenses (two 
LD2568-A with -9.0 mm focal length and one LD2060-A with -
15.0 mm focal length from Thorlabs) and one optical difuser (HOLO 
80 Deg 12.5mm from Edmund Optics), so the green laser can spread 
over a whole surface. In focused mode, the laser beam remains as a 
dot when it is landed on the object’s surface, concentrating energy 
for long-distance sensing applications. 

4.2 Algorithm 
The output of our sensor setup is an ordered stack of video framesn oN −1 
vk , where N is the total number of frames. We assume that 

k=0
the video is captured at a frame rate f . Our goals from this frame-
stack are twofold: frst, we want to reliably estimate speckle velocity 
felds; and second, to estimate the applied force in real-time. These 
aspects are discussed below sequentially. 

4.2.1 Speckle Velocity Fields. The speckle frames have distinctive 
structures. Qualitatively, as a result of applied force, the speckle 
patterns show distinctive centripetal displacement. On smaller time 
scales, these can be approximated as local pattern translations. 
However, across larger timeframes, scale diferences may also be 
observed in local patterns. Given these observations, we set up 
the velocity feld estimation problem as a fow estimation problem 
across small timeframes. That is, we estimate fow displacement 
across every two adjacent timeframes, thereby obtaining a corre-
lated metric to the fow velocity. The fow displacement is used 
as a proportional estimate for laser speckle velocity. Algorithm 1 
includes pseudocode for this simple algorithm. 

Algorithm 1 Speckle velocity feld estimation 
Input: � kFrame stack v 

N 
= 
− 
0
1, number of frames N , video frame rate f , Optical k

fow operator OpticalFlow {·, ·}
Output: � k N −2speckle velocity stack r k =0� k1: Initialize r ← 0 ∀ k ∈ {0, 1 . . . N − 2}
2: for i = [0, N − 2] do� i i+13: ri ← OpticalFlow v , v 
4: end for � N −2k5: return r k =0 

4.2.2 Real-time Force Estimation. Qualitatively, the applied force 
on the surface and temporal integral of the speckle velocity are 
directly correlated. Therefore, given the material and its physical 
confguration, a mapping may be learned to infer applied force 
from the integral of the estimated speckle velocity. The estimate 
speckle velocity is calculated by averaging projected lengths of all 
vectors within the image frame, towards the estimated force center. 
Note that this gives us a signed measure for the estimated speckle 
velocity. A cumulative sum of (i.e., integral) the estimated speckle 
velocity over time is then directly used by regression models to 
estimate the instantaneous applied force. 
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Acrylic MetalWood

1mm 1mm 1mm

60.96 cm 60.96 cm 60.96 cm

Figure 6: Photos and microscopic images of materials. The 
actual side lengths of global photos and zoom-in images are 
60.96 cm and 1 mm respectively. 

5 EVALUATION 

5.1 Apparatus 
As shown in Fig. 5 Right, a force curve gauge (resolution 0.1 N) 
is mounted on a linear actuator (resolution 7.8125x10−7 m/step), 
pointing towards the object surface. The sensor bundle was placed 
above the surface. The surface was supported on its edges by an 
aluminum frame base. The ground truth force reading from the force 
curve gauge and the raw data from the camera were streamed to a 
computer. The linear actuator was also connected to the computer 
for control. 

5.2 Test Materials 
Our test apparatus involved sheets of three types of materials (wood, 
acrylic, and metal) which are common to fnd in daily settings. 
These square sheets measured 60.96 cm long and of a variety of 
thicknesses, which are common building materials purchased from 
home improvement retailers [5, 24, 33]. To measure the roughness 
of these materials, we conducted a friction test using a 3D printed 
PLA instrument with a force gauge to measure the coefcients of 
friction. For the three type of materials we tested, their coefcients 
of friction measured 0.334, 0.417, and 0.301 for wood, acrylic, and 
metal. Fig. 6 shows a closer view of them. 

• wood: 5 mm, 5.56 mm (7/32"), 6.35 mm (1/4") 
• acrylic: 1.59 mm (1/16"), 3.18 mm (1/8"), 6.35 mm (1/4") 
• metal: 0.79 mm (1/32"), 1.59 mm (1/16"), 3.18 mm (1/8") 

5.3 Data Collection Procedures 
We describe the procedures for one complete trial of data collection 
in this section. The frst step was pre-collection preparation. Placed 
on top of the aluminum frame base, the sheet was simply supported 
by its four edges. The sensor bundle was then adjusted carefully for 
the correct working distance and laser coverage (i.e., diverged vs. 
focused modes). We also adjusted the camera’s exposure time and 
gain in software to ensure a clear view of laser speckles. Besides, 
we set the indenter of the force curve gauge to hover above the 
centroid of the sheet. The reading of the force curve gauge was 
0.0 N at the beginning of each data collection trial. 

We started data collection once the setup was ready. As the linear 
actuator went downwards at a speed of 6.7208 × 10−2 mm/s, the 
indenter of the force curve gauge approached the sheet surface with 
a force reading of 0.0 N. Once the indenter got in contact with the 
surface, the force reading started to increase as the actuated force 
incremented. Once the force reached 5.0 N, the force curve gauge 

started to retract until the reading returned to 0.0 N. The speckle 
images (with a resolution of 1536×2048 at 121 fps), force readings 
(with a resolution of 0.1 N at 10 fps), and indenter displacement 
(counted in steps) were saved during this push-release process 
with synchronized timestamps. After the process, we recorded the 
location of the indenter (xc ,yc ). 

The next step was post-processing. We applied a mask to remove 
regions where speckles were induced on the linear actuator as op-
posed to the tested sheet. In real-world applications, this mask could 
be easily generated using depth cameras. We also set a threshold to 
get rid of regions that were too dark. 

Following the procedure above, the collected data is called one 
"trial" for the given object sheet. Each trial took from 40 to 85 
seconds to complete, depending on the elasticity of the material 
of the tested sheet. Five trials were collected per sheet. In total, 
we collected 2625 seconds of data with 317625 images, 2625 force 
readings, and 225830 linear actuator steps. 

5.4 Train-Test/Calibration Procedures 
We evaluated ForceSight in two procedures, each following a unique 
calibration process that could be used in real-world scenarios. Note 
that we use "train" and "test" to explain the data split in building and 
evaluating our regression models, though we did not use machine 
learning in ForceSight. 
Procedure#1: Train-Test split by trials. In this procedure, we 
split the fve trials into train trials and test trials with diferent 
split percentages. For example, the train-test split percentage is 
1/(1 + 4) = 20% when we build the regression model on one trial 
and test it on the other four trials. Diferent combinations under 
the same percentages are grouped in an N-fold manner. This is to 
refect a common real-world calibration process where sensors are 
calibrated with a full dynamic range of future signals to expect. 
Procedure#2: Train-Test split by force. In this procedure, we 
frst bucketed one trial of data (0-5 N) into fve equal 1 N-range 
bins, and split the bins into train bin(s) and test bin(s) with diferent 
split percentages. For instance, the split percentage 40% indicates 
the regression model is built on forces in the frst two bins and 
tested on the three remaining bins. Additionally, the train portion 
always starts from 0 N, and the test portion always follows the end 
of the train portion. It refects another real-world scenario where 
sensors are calibrated with partial dynamic ranges of the future 
signals to expect. This is inherently challenging but could yield 
useful insights into the generalizability of the model. 

In both procedures, we varied the amount of data in building the 
regression model, from 20 % to 80 % (i.e., 1-4 trials in Procedure#1, 
and 1-4 Newton range in Procedure#2). We evaluated our regression 
models with all train-test split combinations. 

5.5 Results 
We collected data in two settings, including one short sensing range 
with three materials (i.e., wood, acrylic, metal) using the diverged 
mode, and four long sensing ranges with one material (i.e., metal) 
using the focused mode. Additionally, we evaluated ForceSight with 
two train-test procedures. This evaluation process yielded four 
combinations, which we discuss in this section. 
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Figure 7: Evaluation results on sheets of three materials (wood, acrylic, metal) of various thicknesses. 
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Figure 8: Evaluation results on four sensing distances (2 m, 4 m, 6 m, 8 m) tested on the metal sheet with a thickness of 1.59 mm 
(1/16"). 

5.5.1 Short Range Sensing (Diverged Mode). As Fig. 7 shows, Force-
Sight achieves an averaged error of 0.18 N (SD=0.11) and 0.31 N 
(SD=0.12) for the two train-test procedures, respectively. 
Train-Test split by trials. Comparatively, the train-test split by 
trials (i.e., calibrating the sensor with signals of full dynamic range) 
yielded better results. Among the three tested materials, Wood 
performs the best with the lowest averaged error of 0.11 N (SD=003) 
followed by Acrylic (error=0.13 N SD=0.06) and Metal (error=0.30 N 
SD=0.28). We found a signifcant source of error in the thickest 
metal sheet we tested (error=0.61 N, SD=0.31) for the small surface 
deformation resulting from the test force. Even with 5 N force, the 
surface deformation is almost invisible to naked eyes, though it can 
be detected by our sensor. We suspect that real-world applications 
with thick metal sheets would most likely involve stronger force, 
which could result in larger deformations and thus lower the errors 

(or percentage errors). When comparing between percentages of 
the training data, we did not fnd any major diferences. This result 
indicates that ForceSight can be calibrated very efciently with a 
small amount of data. 
Train-Test split by force. Train-Test split by force (i.e., calibrating 
the sensor with partial dynamic ranges) yielded an average error 
of 0.31 N (SD=0.12) across all materials. Interestingly, Wood per-
forms the worst, with an average error of 0.44 N (SD=0.49) among 
all materials. Based on our observations, this was due to the het-
erogeneous internal microstructure distribution inside the wood 
sheets, resulting in non-linearity, which makes it harder for the 
regression model to generalize for unseen signals. When comparing 
between percentages of the training data, we did not fnd any major 
diferences, pointing us again to the insight that ForceSight can be 
calibrated very efciently with a small amount of data. 

https://error=0.61
https://error=0.30
https://error=0.13
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5.5.2 Long Range Sensing (Focused Mode). Fig. 8 shows that Force-
Sight achieved an averaged 0.18 N (SD=0.05) and 0.18 N (SD=0.03) 
error for the two train-test procedures, respectively. 
Train-Test split by trials. Again, the train-test split by trials 
yielded better results among the two procedures, which suggest 
calibration with signals of full sensing dynamic range for real-
world applications. Among the four tested distances (2 m, 4 m, 6 m, 
8 m), ForceSight yielded average errors of 0.12 N (SD=0.06), 0.20 N 
(SD=0.13), 0.16 N (SD=0.08), and 0.08 N (SD=0.04) respectively. We 
did not observe a clear correlation between distance and sensing 
performance, indicating the feasibility of ForceSight in long-range 
sensing. However, during the data collection, we observed more 
oscillations (i.e., noise) of laser speckles at longer sensing distances 
due to ambient vibration (e.g., airfow from HVAC, appliances run-
ning) and our algorithm is robust to these noises. We are cautious 
that severe vibrations from a longer sensing distance might require 
a superior denoise algorithm to process. Additionally, we did not 
fnd having more data in building regression models improves our 
sensing accuracy. This result is consistent with the outcome of the 
previous tests. 
Train-Test split by force. Among the four tested distances (2 m, 
4 m, 6 m, 8 m), results indicate average errors of 0.16 N (SD=0.13), 
0.16 N (SD=0.14), 0.19 N (SD=0.15), and 0.21 N (SD=0.18) respec-
tively. We did not fnd any linkage between distance and sensing 
performance. However, we found having more data in building the 
regression models improves our sensing accuracy. 

5.6 Supplemental Studies 
In supplemental studies, we investigated additional factors that 
could afect our sensing performance. Results from these additional 
factors further our understanding of this sensing technique and 
enrich its sensing vocabulary. 
Angle of incidence. The angle of incidence has been a major fac-
tor in laser sensing performances due to the fact that refected 
light energy increases as the laser gets perpendicular to the sensed 
surface. In this test, we collected data from various angles of in-
cidence (from 0 to 40 degrees with a 10-degree internal), with a 
diverged laser positioned 30 cm away from the intersection point 
of its principal axis and the surface (i.e., 1.59 mm thick metal sheet), 
following the data collection and evaluation procedure as in our 
main evaluation. Results are shown in Fig. 9. 

Overall, we noted an average error of 0.15 N (SD=0.06) and 0.13 N 
(SD=0.14) from calibration procedures #1 and #2 respectively. We 
did notice slight diferences between performances when the sensor 
bundle is oriented with diferent angles of incidence, however, we 
did not see a trend that indicates a higher angle of incidence lower-
ing the sensing performance. Though promising, we are cautious 
that more material types including ones that are more specular 
should be included in the test set. 
Force location estimation. As a result of the centripetal displace-
ment of the speckle patterns in response to force (e.g., a touch), the 
contact location is the common center for the estimated velocity 
vectors. We propose a center-estimation algorithm, which is essen-
tially solving a distance-minimization problem. For a given center 
estimate, the error value is the sum of perpendicular distances of 
the point from all the estimated laser speckle velocity vectors for a 
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Figure 9: Evaluation results on the angle of incidence. 
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Figure 10: Detecting force location on diferent materials us-
ing ForceSight. The ground truth force location is shown in 
red. Speckle velocity is shown in a log scale. 

given velocity feld. The point with a minimum error value is the 
best center estimate. We initialized a random center and then used 
gradient descent optimization. The algorithm is applied to a single 
frame with a learning rate of µ = 0.01 and steps T = 10, 000 in Py-
Torch. The fnal force location estimates are obtained by averaging 
over 10 random initialization and runs. 

Figure 10 shows qualitative results on force location detection 
on the three materials (with the medium thicknesses). We note that 
we were able to approximately detect the force location for the 
metal and acrylic materials with mean Euclidean errors of 4.86 cm 
(STD of 1.66 cm) and 8.38 cm (STD of 6.00 cm) respectively. These 
results serve as proof of concept for ForceSight being a viable tool 
for not just force sensing but force location estimation as well. 
Notably, force location performs poorly on wood, as a result of its 
heterogeneous internal structure with a mean Euclidean error of 
19.38 cm (STD of 1.09 cm). This establishes that the force location 
is limited in accuracy by the nature of material structures and 
resulting speckle motion features. 
A wide array of materials. In this test, we included a wider set of 
materials and objects, including a book, pillow, package box, foam 
board, acrylic, wood, metal, and silicone. We collected one trial 
(0-5 N) of data for each material with a focused laser (i.e., focused 
mode) 30 cm away from surfaces and using the same procedure as 
previous tests. Force was applied 10 cm away from the laser dot on 
the tested surface. We built regression models that minimize errors 
(maximizing R2) but included both linear and quadratic regression 
models in our search. Fig. 13 shows our results which indicate 
that simple models well ft data collected from these materials. We 
found Book to be the only object that requires a second-degree term 
among the test objects/material sheets. The distinctive coefcients 
across these materials can be used to identify material types. In 
this use case, ForceSight becomes a sensing instrument that yields 
elasticity of surfaces if the applied force is known. 
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Figure 11: On-world true-force touch sensing. A: Integrated 
Laser Speckle Velocity Field overlaid on raw laser speckles. 
B: An RGB image captured by a webcam. C: Detected force 
from ForceSight. Of note that, to avoid optical fows induced 
by user motions, sensing is turned of at regions that are rec-
ognized as user body by MediaPipe pose tracking. 

6 EXAMPLE APPLICATIONS 

6.1 On-world Touch Sensing 
Projected touch interfaces create ubiquitous interaction experience, 
which much prior work has investigated [39, 41, 42]. With depth 
cameras, touch sensing on everyday surfaces has never been eas-
ier. And yet, commodity depth cameras cannot sense fne-grained 
touch with small fnger movements (sub-centimeter), as shown and 
discussed in prior work [41, 43]. However, being able to segment 
touch from minute motions without having users exaggerate their 
movements to accommodate for sensor inaccuracy is critical to fully 
utilize the expressive and natural interactions provided by touch. 
In this regard, ForceSight creates a potential solution using force as 
an additional signal to aid touch segmentation (touch vs. no touch). 
Fig. 11 shows the integrated laser speckle velocity feld on ofce 
partitions when a user touches them at forces similar to ones on 
touchscreens. Note that we used Google MediaPipe [18] pose track-
ing to exclude regions of user bodies so that the detection pipeline 
is robust against interference from users’ motion. ForceSight also 
works with a broader array of everyday surfaces including a fabric 
couch arm, a wood table, walls, and a fridge door. 

6.2 3D Printing Interactivity 
ForceSight also provides a viable path to 3D printing interactivity as 
many previous systems aim to achieve [26, 27, 37]. To achieve this, 
we embedded a lite version of ForceSight consisting of a 3 mW laser 
and a low-end webcam as in Fig. 12 C. The lite sensor bundle costs 
less than $20 to make. Fig. 12 D and E show example interactions 
enabled by the 3D printed controller with embedded ForceSight. 
ForceSight senses and recognizes the discernible surface deforma-
tions due to the applied force when users press the buttons and tilt 
the joystick in diferent directions. Since ForceSight sensor bundles 
are installed at the controller base, a user can easily switch con-
troller top plates for applications that demand diferent interactions. 

Figure 12: Interactive 3D prints using embedded ForceSight 
systems. A: Two designs of thin top plates that can trans-
form user interactions into discernable plate deformations. 
B: 3D models of a controller. C: Two low-cost lite ForceSight 
bundles are embedded inside the controller. The rest of the 
fgure shows live detection results of user interactions fea-
turing discrete buttons and the joystick. 

6.3 Force-based Material/Object Identifcation 
Material identifcation has shown practical uses in HCI, as prior 
works demonstrated ID-enabled interactions [25] and material-
aware laser cutting [6]. We notice that diferent materials exhibit 
distinguishable deformations in response to force due to variance in 
density and internal microstructures. For example, hard materials 
(e.g., wood) have a wider and shallow "footprint" whereas soft mate-
rials (e.g., silicone) deform locally around the force point resulting 
in a narrow and deep "footprint". The footprint geometry reveals 
much information about materials. 

Another approach is to use regression model parameters as clas-
sifer features, which essentially convey Young’s Modulus and the 
moment of inertia. Fig. 13 shows diferences in parameters learned 
from our supplemental study A Wide Array of Materials, which can 
be leveraged for identifcation. We believe this force-based material 
identifcation can have broader applications in digital fabrications 
(e.g., water jetting) as well as object handling (i.e., robot arms can 
apply less amount of force when handling delicate materials). 

6.4 Force-Aware Object Manipulation 
Handling delicate objects requires force-sensitive mechanisms. Con-
ventional methods rely on contact-based force sensors on robot 
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Figure 13: ForceSight builds a distinctive set of linear regres-
sion models for diferent materials/objects with high R2 . Co-
efcients of these models can in turn reveal the material 
type if the applied force is known, enabling material iden-
tifcation for richer applications. 
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Figure 14: Remote force sensing for delicate object handling. 
A: Robotic arm grasps a soda can sequentially with three dif-
ferent forces – light, strong, and medium. B: Integrated Laser 
Speckle Velocity. C: Force detected by ForceSight. 

arms. ForceSight creates a diferent approach to facilitate remote 
sensing which can potentially turn into centralized sensing in which 
one sensor can serve multiple robot arms under its feld of view 
(akin to the sensing scheme of security cameras). Fig. 14 shows 
ForceSight working with a focused 10 mW laser and a low-cost 
robot arm (Arduino Braccio) to sense the grasping force on a soda 
can as a test primitive. ILSV is shown in Fig. 14 B. Once the force 
reaches the desirable amount, the robot arm starts lifting up the 
object (Fig. 14 C). 

7 DISCUSSION 
Laser safety The strongest laser used in ForceSight is 100 mW 
(Class III B) which is by itself hazardous for eye exposure. However, 
it is only used in diverged settings with wide divergence achieved 
by using three concave lenses concatenating with a difusing glass. 
The divergence signifcantly shortens the Nominal Ocular Hazard 
Distance (NOHD) [10]. At our divergence (79.6 degrees), the NOHD 
is 5.09 cm. To further improve the safety of users, ForceSight could 
work with other sensing modalities such as RGB cameras and depth 
sensing – the laser can be turned of once users are too close. Force-
Sight could also use low-power guarding lasers [12] or deploy it at 
high installation/vantage locations, e.g., ceilings, to improve safety. 
Laser power and color During experiments and application de-
velopments, we used and tested the feasibility of a wide array of 
laser power levels (10, 20, 30, 50 mW) and colors (green, red). In this 
work, we predominantly demonstrated visible green lasers for ease 
of development and troubleshooting. In real-world applications, 
invisible infrared lasers can be used to minimize intrusiveness. 
Diferent types of cameras Additionally, we tested a wide va-
riety of cameras including the IDS Imaging U3-3060CP, ELP 5.0 
megapixel, and 2.0 megapixel USB Camera. We found the high 
camera frame rate to be an important factor in capturing clearer 
speckles that are easier to track. Low-frame-rate cameras can be 
used for slower applications of force. To track sudden applications 
of force with low-frame-rate cameras, we can also use blur detec-
tion, which is commonly adopted for laser speckle contrast imaging 
in clinical applications. Even though blur detection focuses more on 

the presence of force, it still can enable use cases such as on-world 
touch segmentation. 
Open source We open source our algorithms and dataset to facili-
tate others’ use of ForceSight. We hope the joint force behind this 
technique could further advance it and enable an even more diverse 
set of applications with practical uses. The source code and data 
are available at https://github.com/forcesight/ForceSight. 

8 LIMITATION 
ForceSight has two main limitations which we plan to work on 
in future work. These limitations are around the compatibility of 
materials, and sensing range & resolution. 

First, ForceSight works with many everyday surfaces with a few 
exceptions – plastically deformable materials, discontinuous mate-
rials, very stif materials, and transparent materials. To begin with, 
ForceSight requires deformation delivery. Plastically deformable 
materials, e.g., Play-Doh, cannot transfer the deformation from the 
contact point to its surroundings. Second, discontinuous materials 
like fur and polar feece could not work with ForceSight, because the 
force applied at one point will not be passed on to its surrounding 
regions. Third, ForceSight cannot work with stif surfaces that are 
too hard to deform, e.g., a thick wood table, or concrete foor. Finally, 
ForceSight does not work with transparent surfaces. Laser beams 
pass through them, generating extremely dim speckles beyond the 
sensitivity of our system. 

We also plan to optimize ForceSight for 1) extreme large forces 
(e.g., car parking on the driveway) and 2) high sensing resolution 
(e.g., coin on the table). Achieving these requires us to have cameras 
with better performance (e.g., faster speed, denser pixels on the 
CCD sensor) and force meters that can provide more fne-grained 
data in future work. 

9 CONCLUSION 
We present ForceSight, a non-contact force sensing technique using 
laser speckle imaging. We derived models for both the formation 
and motion of laser speckles induced by the deformation of rough 
surfaces at force. We developed and evaluated our system with a 
series of tests featuring diferent materials, sensing distances, as 
well as calibration methods. Results indicate the high accuracy of 
ForceSight across test settings. We conclude the paper with four 
applications showcasing the strength of ForceSight in diferent use 
cases. Overall, we believe ForceSight opens up new force sensing 
opportunities and novel interaction modalities, which could be 
readily integrated into many real-world applications and future 
computing systems. 
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